F325: Equilibria, Energetics and Elements 5.2.3 Electrode Potentials and Fuel Cells

59 marks

1. Use the standard electrode potentials in the table below to answer the questions that follow.

ı	$Fe^{2+}(aq) + 2e^{-} \Longrightarrow Fe(s)$	E ^o = −0.44 V	
II	$V^{3+}(aq) + e^{-} \rightleftharpoons V^{2+}(aq)$	<i>E</i> ^o = −0.26 V	
III	$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	<i>E</i> ^e = 0.00 ∨	
IV	$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(I)$	<i>E</i> ^e = +0.40 V	

An electrochemical cell was set up based on systems I and II.

(i)	Write half-equations to show what has been oxidised and what has been reduced
	in this cell.

oxidation:

reduction:

[2]

(ii) Determine the cell potential of this cell.

[1]

[Total 3 marks]

2. Use the standard electrode potentials in the table below to answer the questions that follow.

ı	$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	<i>E</i> ^o = −0.44 V
II	$V^{3+}(aq) + e^{-} \rightleftharpoons V^{2+}(aq)$	<i>E</i> ^o = −0.26 V
III	$2H^{+}(aq) + 2e^{-} \Longrightarrow H_{2}(g)$	<i>E</i> [⊕] = 0.00 V
IV	$O_2(g) + 4H^+(aq) + 4e^- \implies 2H_2O(I)$	<i>E</i> ^o = +0.40 ∨

An electrochemical fuel cell was set up based on systems III and IV.

(i)	Construct an ed	quation for the	spontaneous cell	reaction. Show	your working.
۱.,		J 0.0	- p		<i>j</i> • • · · · · · · · · · · · · · · · · ·

(ii)	Fuels cells based on systems such as III and IV are increasingly being used to
	generate energy.

ather than using fossil fuels.	

Discuss two advantages and two disadvantages of using fuels cells for energy

[4]

[2]

[Total 6 marks]

- 3. The standard electrode potential of $Cu^{2+}(aq) + 2e^{-} \iff Cu(s)$ is +0.34 V.
 - (a) Define the term standard electrode potential.

[3]

(b) Complete the diagram to show how the standard electrode potential of $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$ could be measured.

[3]

[Total 6 marks]

		is an important metallic element. Its compounds hastates.	ve a number of different	
(a)	(i)	Give one use of chromium metal and state the promakes it suitable for this use.		
				[1]
	(ii)	Complete the electronic configuration of a chromiu	m atom.	
		1s ² 2s ² 2p ⁶		[1]
(b)	The	following equations relate to half-cells involving iron	and chromium ions.	
		$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	E ⁹ = +0.77 ∨	
		$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 7H_2O$	E ^e = +1.33 V	
	A ce	ll was set up by combining these two half-cells.		
	(i)	Derive a balanced equation for the reaction that wo is in use. Explain your reasoning in terms of oxidation and re		
				[3]

4.

(ii) Determine the emf of the cell under standard conditions.

5. The standard electrode potentials for some redox systems involving vanadium are shown below.

These are labelled A, B, C and D.

$$E^{6}/V$$
A $VO_{2}^{+} + 2H^{+} + e^{-} \rightleftharpoons VO^{2+} + H_{2}O$ +1.00
B $V^{3+} + e^{-} \rightleftharpoons V^{2+}$ -0.26
C $V^{2+} + 2e^{-} \rightleftharpoons V$ -1.20
D $VO^{2+} + 2H^{+} + e^{-} \rightleftharpoons V^{3+} + H_{2}O$ +0.34

(a) Which of the vanadium species shown in ${\bf A},\,{\bf B},\,{\bf C}$ and ${\bf D}$ is the most powerful oxidising agent?

.....

(b) A student wishes to set up a cell with a standard cell potential of 0.60V.

(i) Which two of the redox systems, **A**, **B**, **C** or **D**, should he choose?

[1]

[1]

(ii) Complete the labelling of the following diagram which shows the cell with a standard cell potential of 0.60V.

The emf of this cell is only 0.60 V under standard conditions. What do you understand by the expression <i>standard conditions</i> ?		
[1]		
[Total 7 marks]		

6. The standard electrode potential of the $\frac{1}{2}$ C l_2 / C l_2 half-cell may be measured using the following apparatus.

(a) Suggest suitable labels for A, B, C and D.

A

B

C

D

(b) The half cell reactions involved are shown below.

$$\frac{1}{2}$$
C l_2 + e⁻ \rightleftharpoons C l^-

$$E^{\Theta} = +1.36 \text{ V}$$

$$H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$$

$$E^{\Theta} = 0.00V$$

(i) Use an arrow to show the direction of flow of electrons in the diagram of the apparatus. Explain your answer.

[2]

[2]

	(11)	standard conditions?	
			[2]
(c)	The	half cell reaction for $ClO_3^{-1}/\frac{1}{2}Cl_2$ is shown below.	
		$ClO_3^- + 6H^+ + 5e^- \Longrightarrow \frac{1}{2}Cl_2 + 3H_2O \qquad E^0 = +1.47 \text{ V}$	
	Wha	t does this tell you about the oxidising ability of C/O_3^- compared with C/I_2 ?	
	Expl	ain your answer.	

[2]

[Total 8 marks]

7. Some standard electrode potentials are shown below.

$$E^{e}/V$$

$$Ag^{+} + e^{-} \rightleftharpoons Ag + 0.80$$

$$\frac{1}{2}Cl_{2} + e^{-} \rightleftharpoons C\Gamma + 1.36$$

$$Cu^{2+} + 2e^{-} \rightleftharpoons Cu + 0.34$$

$$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+} + 0.77$$

$$\frac{1}{2}I_{2} + e^{-} \rightleftharpoons \Gamma + 0.54$$

(a)	Define the ter	m <i>standard</i>	l electrode	potential.
-----	----------------	-------------------	-------------	------------

(b) The diagram below shows an incomplete cell consisting of Cu/Cu²⁺ and Ag/Ag⁺ half-cells.

(i) Complete and label the diagram to show how the cell potential of this cell could be measured.

(ii) On the diagram, show the direction of **electron** flow in the circuit if a current was allowed.

[1]

[2]

[3]

		standard cell potential =	V	[1]
	(iv)	Write the overall cell reaction.		
				[1]
(c)	elect	orine will oxidise Fe ²⁺ to Fe ³⁺ but iodine will not. Explain wh trode potential data.		
				[2]
cont	ribute	s with oxygen and water to form nitric acid, HNO_3 . In the as to acid rain. Construct a balanced equation for this formaxidation numbers to show that this is a redox reaction.		пагкъј
			[Total 2 r	narks]

(iii)

8.

Calculate the standard cell potential.

9. Chlorine gas may be prepared in the laboratory by reacting hydrochloric acid with potassium manganate(VII). The following standard electrode potentials relate to this reaction.

$$\frac{1}{2}Cl_2 + e^- \iff Cl- E^0 = +1.36 \text{ V}$$

$$MnO_4^- + 8H^+ + 5e^- \implies Mn^{2+} + 4H_2O \qquad E^0 = +1.52 \text{ V}$$

(a) Define the term standard electrode potential.

[3]

(b) Determine the standard cell potential for a cell constructed from these two redox systems.

[1]

[Total 4 marks]

10. Chlorine gas may be prepared in the laboratory by reacting hydrochloric acid with potassium manganate(VII). The following standard electrode potentials relate to this reaction.

$$\frac{1}{2}Cl_2 + e^- \iff Cl- E^0 = +1.36 \text{ V}$$

$$MnO_4^- + 8H^+ + 5e^- \implies Mn^{2+} + 4H_2O \qquad E^0 = +1.52 \text{ V}$$

- (a) Use the half-equations above to:
 - (i) construct an ionic equation for the reaction between hydrochloric acid and potassium manganate(VII);

.....

.....

	(ii)	determine the oxidation numbers of chlorine and manganese before and after the reaction has taken place;	
			[2]
	(iii)	state what is oxidised and what is reduced in this reaction.	
			[2]
(b)		tassium manganate(VII) and very dilute hydrochloric acid are mixed, there is sible reaction. Suggest why there is no visible reaction in this case.	
			[1]
		Total 7 ma	
		Total 7 me	41 INO]